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This chapter is concered with how to calibrate a computerehtwlobservational

data when the model produces multivariate output and is eeatly expensive to

run. The significance of considering models with long runesnis that they can
only be run at a limited number of different inputs, rulingt @brute-force Monte

Carlo approach. Consequently, all inference must be dotfeaimited ensemble

of model runs. A probabilistic approach is taken here, wlih aim being to find a

probability distribution which represents our uncertpiabout the true model inputs
given the observational data and the computer model. Werasstatistical models
for the measurement errors on the observed data and forstyegancy between the
model and reality. We also describe a statistical model tmrumcertainty about the
computer model’s value at untried input values.

We take a Bayesian approach and describe our prior belieist #fte model and
update these beliefs after observing an ensemble of mods! saussian process
priors are used as a flexible semi-parametric family to dies@ur beliefs, and the
posterior distribution of the process can be considerednasta-model of the com-
puter model. We refer to the meta-model aseanulatorof the computesimulator
(Sackset al. 1989). This approach allows beliefs to be described abeuhtbdel
output at input configurations not in the original design.
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The Bayesian approach to calibration described here wagifien by Kennedy
and O’Hagan (2001). Their approach was for univariate cdarpuodels, and we
extend that here to deal with multivariate models. We usecfpal component anal-
ysis to project the multivariate model output onto a lowenelinsional space, and
then use Gaussian processes to emulate the map from thesjrgueet to the lower
dimensional space. We can then reconstruct from the subgpdbe original data
space. This gives a cheap surrogate for the computer moatet#im be used for
calibration.

The layout of this paper is as follows. In Section 1 and 2 wepihice problem
and in Section 2 we describe the notation and the calibrétionework. In Section
3 we introduce the idea of principal component emulationiarection 4 we give
details of how to use this approach to calibrate multivariabdels. To illustrate
the methodology we use the University of Victoria internageicomplexity climate
model, which we will calibrate to observational data caketthroughout the latter
half of the twentieth century. The model is introduced atehd of Section 1 and is
returned to at the end of each subsequent section.

0.1 Introduction

The process of fitting a model to data has different namesrapg on the dis-
cipline. It is variously known as an inverse problem, datsiragation, parameter
estimation, calibration, or as we prefer to think of it, asay8sian inference prob-
lem. In this section we carefully describe the problem andig¢he notation needed
for the developments described in the following sections céhsider the problem in
which we have a computer model of a physical system alongsaeitie observations
of the system. The aim is to combine the science capturedéogdamputer model
with the physical observations, to learn about parametaegand initial conditions
for the system. There are three sources of information tleatant to incorporate:

1. The computer modefy(-), built using expert scientific knowledge.
2. Field observations of the physical systePa,q.

3. Other background information and expert knowledge, saglprior distri-
butions of parameters and information about measurememt @nd model
discrepancy.

We consider each of these sources in turn.

The computer model

The computer modeln(-), is considered to be a map from the input sp@ce 7,

to the output spac® C R™. Here we distinguish between two different types of
input parameter$ € O are the calibration parameters that we wish to estimate, and
t € T are control parameters or index parameters that are asgorbedknown.



The calibration parametetsmay be physical constants, context specific con-
stants, or fudge factors needed to make the model perforimihelse are parameters
which would not need to be specified if we were doing a physgpkriment. We
take the best input approach and assume that there is a 4ieglke value of6,
which we label, such that the model run dtmost accurately represents the field
data given the imposed error structure.

The control parameterse 7 may be context indicating inputs (for example,
they might specify yearly industrial GOemissions), known constants, or output
index variables. For multivariate models there is an inputput dichotomy, in that
we can treat the model as multivariate or alternatively wale¢c@dd an index vari-
able to the inputs and consider the model to be univariateekample, part of the
predictions of the UVic climate model introduced below atma@spheric CQ con-
centrations for the years 1800-1999. The approach takdisiotiapter is to view this
as a 200 dimensional multivariate computer model. An adtéva approach would
be to add an index variabieto the input, wheré indicates which year's COcon-
centration we wish to predict. This would allow us to view thedel as univariate
and apply the methods of Kennedy and O’'Hagan (2001). Howavearactice if
the number of outputs is large then there are considerabléealges involved both
computationally in emulating the function, and theordlycia specifying a suitable
covariance function for the emulator, especially if theputs are of different type.

Our approach in this chapter is to treat the models as mtititea We suppress
any dependence on context indicating inputs and known antssfor notational clar-
ity, although their inclusion does not change the analygisertain points we add in
an index variable for the outputs and write: (6, t) when this helps with the exposi-
tion, however for the most part we just write(¢). The usage will be clear from the
context. A final point to note is that it is not always clear efhconstants we should
treat as unknown. For while the true physical value of a patanmay be known, it
may be that using a different value will lead to better pradits with the computer
model. This judgement needs careful thought in conjunatidh consideration of
the beliefs of the modellers.

The focus here is on calibrating models with long run timebere what we
mean by long depends on the situation (number of inputs atmlita) amount of
field data, amount of computer power available, etc.). A egagnce of this cost
will be that we will only have a limited ensemble of model rumsilable to us.
In other words, there will be a set &f design pointsD = {6, : i =1,..., N} for
which we know the output of the mod&l,, = {y; = m(6;):i=1,...,N}. We
refer to these model runs as the simulated d2tg,. Note thatD should be chosen
to be a space filling design such as a maxi-min Latin hyperoubeSobal sequence.
In Section 3 we make assumptions about the continuity anégmess ofn(-) that
allows us to predict its value at inputshot in the original design.



Field observations

We assume that we have observations of the physical syg¥gm, that directly
correspond to outputs from the computer model. We (€} represent reality at,
wheret is an index variable such as time or location etc. The assamptade here
is that the field data is a measurement of realitywith independent Gaussian error.
That is

Driea(t) = C(t) + €(t)

wheree(t) ~ N(u, 02). It will usually be the case that; = 0 for all ¢, and often
the case that we have homoscedastic errors sofhato? for all ¢, however neither
of these assumptions is necessary for the analysis. Oftem#an and variance
parameters will be known, and will be reported with the data.

Note that the assumption here is that we observe realityindpendent random
noise. A common and incorrect assumption in data assimilapproaches is to
assume that we observe the model prediction plus indepémdedom noise. If
there is any discrepancy between the model and realityislaissumption is wrong
and could lead to serious errors.

Other background information

Calibration is primarily about combining the physics in thedel with field obser-
vations of the system to produce estimategfddowever, there will often be expert
knowledge available that has not been built into the modat & this knowledge
will be prior information about the likely best input valyggined through previous
experiments and reading the literature etc. Ideally, imfation should be elicited
from the experts before they observe either the ensembledéhnmuns or the field
data, however in practise this will often not be the cases Btremely rare to be
completely uncertain abou, indeed it is hard to imagine a situation where val-
ues as diverse ds 1010, 101090 gre all held to be equally likely. We represent this
prior knowledge as a probability distribtiar{#) over the range of possible inpu#s
Although we are using probability to represent our uncetyaabout, that does not
mean that we believe it to be a random value, just unknowmek2003) gives an
introduction and justification for why the Bayesian paradlig the right way to treat
uncertainty and Garthwaitet al. (2005) give an excellent introduction to elicitation
of experts beliefs.

As well as prior information abouwt, there may also be prior knowledge about
other aspects of the experiment. For example, we have glaadmented that the
structure and magnitude of the measurement error of thedleddrvations is often
known and can be elicited from the relevant experts. The ffevdemay also know
something about how well the simulater(-) models reality((-). As explained in
more detail below, when making inferences ab@it is important to account for
any discrepancy between the model and reality. We denatertbdel discrepancy
by 6(-) and ask the model builders to provide information about hodahere the
model may be wrong. They may, for example, have more confalensome of the



360
|

CO, level

320
|

1800 1850 1900 1950 2000

Year

Figure 1 Ensemble of 47 model runs of the UVic climate modebfdesign on two
inputs@19 and K .. The output (black lines) gives the atmospheric,@@edictions
for 1800-1999, and the 57 field observations are shown aesivath error bars of
two standard deviations.

model outputs than others, or they may have more faith in thdigtions in some
contexts than in others.

Example 0.1.1 (UVic Climate Model) In order to demonstrate the methodology we
introduce an example from climate science which we predengawith the theory.
We use the University of Victoria Earth System Climate M¢dsfic ESCM) cou-
pled with a dynamic vegetation and terrestrial carbon cyate an inorganic ocean
carbon cycle (Meissner et al. 2003). The model was built deoto study potential
feedbacks in the terrestrial carbon cycle and to see howetladfect future climate
predictions. We present a simplified analysis here, withdetails available in Ric-
ciuto et al. We consider the model to have just two inp@ts, and K., and to
output a time-series of atmospheric €@lues. Input) o controls the temperature
dependence of respiration and can be considered a carbortspwhereads. is
the Michaelis—Menton constant for G@nd controls the sensitivity of photosynthe-
sis and can be considered a carbon sink. The aim is calibteted two parameters
to the Keeling and Whorf (2005) sequence of atmosphericotadioxide measure-
ments. Each model run takes approximately two weeks of dentpue and we have
an ensemble of 47 model runs with which to perform the araly$ie model output
and the field observations are shown in Figure 1.



0.2 Statistical Calibration Framework

Calibration is the process of judging which input parametdues are consistent
with the field data, the model and any prior beliefs. The Bayeapproach to cal-
ibration is to find the posterior distribution of the bestumparameter given these
three sources of information; namely, we aim to find

7T(éu)simv Dﬁclda E)v

where E' represents the prior informatiofi);,,, the ensemble of model runs, and
Dsela the field observations. This posterior distribution givelative weights to all
0 € ©, and represents our beliefs about the best input value itigihieof the com-
puter experiment and the field data.

The posterior distribution of is proportional to its likelihood multiplied by its
prior distribution:

7(0) Dsim, Dsied, E) & 7(Dsim, Dera|d, E)w(0|E)

and so to compute the calibration posterior we require tkelitiood of the data

W(Dsim,pﬁe]dlé, E). Often, the hardest part of any calibration is specificathbn

this likelihood, as once we have the prior and the likelihdattling the posterior

distribution is in theory just an integral calculation. Iraptise however, this will

usually require careful application of a numerical inteéigra technique such as a
Markov Chain Monte Carlo (MCMC) algorithm.

To specify the likelihood we need to state how reality redatethe computer
model, and what we mean by the calibrated input vélie assume that reality at
¢(t), is equal to the computer model output when run at its ‘belsevd (heret is an
index of the outputs) plus a model discrepancy téfm which captures the failings
of the model. We assume that(6, ¢) is sufficient for the model in the calibration,
in the sense that once we kn@m(é) we can not learn anything further about reality
from the computer model. Note thétis the best value here only in the sense of
most accurately representing the data according to thefigukerror structure. The
value found foré need not coincide with the true physical valuefpfand so the
calibration parameters are model parameters, not physarameters. This point
should be strongly stressed to the experts when elicitingy plistributions ford.
We assume that the field data is a direct measurement ofyresdibrded with some
independent measurement ereQr). Mathematically, the calibration framework is

C(t) =m(0,t) + (t)
Diea(t) = ¢(t) + €(t).

Note that the input-output duality allows us to write theeirgnce framework as

Dgelqa = m(é) +d+€



by writing all quantities as vectors. Once we have madeilligional assumptions
abouts(t), e(¢) and possiblyn(d, t), this framework allows us to calculate a likeli-
hood function for the data.

The decision to include a model error terfi;), in the calibration is motivated
by several ideas. Firstly, if we do not model the discrepaneywould be making
the assumption that the field data is just the model outp&tipldependent random
errors. Without the model error term this independencerapson will be wrong.
Secondly, as stated by Box (1976), all models are wrong.€Thee a variety of
reasons why this should be. Perhaps not all physical presédss/e been included,
or perhaps the model equations are solved using a numepigedximation, and so
on. It is important to account for this added source of uaiety in any predictions,
as if not, we may have undue confidence in our predictions.

Goldstein and Rougier (2008) take this idea further anab¢hice the idea of a
reified model. The reified model is the version of the model veeila run if we
had unlimited computing resources. So for example, in dlolmate models the
earth’s surface is split into a grid of cells and the compataassumes each cell
is homogeneous (UVic usesla0 x 100 grid across the earth’s surface with eight
ocean depths). If infinite computer resources were availald could let the grid
size tend to zero, giving a continuum of points across théeayléVhile clearly an
impossibility, thinking about the reified model helps us tedk down the model
error into more manageable chunks; we can consider thergfiffe between the
actual computer model and the reified model, and then therdiite between the
reified model and reality. This approach may provide a wayetip the modellers
think more carefully about the model discrepancy tégm).

If the computer model is quick to run, then we can essentedlyume that its
value is known for all possible input configurations, as ip ifierence procedure we
can simply evaluate the model whenever its value is neededid case, calculation
of the calibration posterior

7T(eltl)ﬁelda m, E) o8 T‘—(Dﬁe]da |97 m, E)W(9|E)a

wherem represents the computer model, is relatively easy as titeatbn frame-
work gives that

Dfeld — m(é) =0 +e

Given distributions for the model discrepang€yand measurement errerwe can
calculate the likelihood of the field data, and thus can firedpbsterior distribution.

If the model is not quick running, then the model’s value iknmwn at all input
values other than those in desigh This uncertainty about the model output at
untried input configurations is commonly calledde uncertaintylf we want to
account for this source of uncertainty in the calibratioarthwe need a statistical
model in order to describe our beliefs about the output viduall possible input
values. This is the topic of the next section.



0.3 Principal Component Emulation

0.3.1 Emulation

If the computer modelmn(-), is temporally expensive to evaluate, then its value
is unknown at all input values except those in a small enserabimodel runs.
We assume that the code has been Nirtimes for all inputs in a space-filling
designD = {0, € © : i =1,..., N} to produce outpuDg;,, = {m(0;) e R"* : i =
1,...,N}, and that further model runs are not available. For &y D we are
uncertain about the value of the model for this input. Howgbgve believe that the
model is a smooth continuous function of the inputs, then arelearn aboutn(6)
by looking at ensemble members run with inputs closg /e could, for example,
choose to predictn(6) by linearly interpolating from the closest ensemble mem-
bers. The function used to interpolate and extrapdlatg to other input values is
commonly called an emulator, and there is extensive lileeadn emulation (some-
times called meta-modelling) for computer experimentg Santneet al. (2003)
for references).

We use a Bayesian framework to build an emulator which atelyraaptures
our beliefs about the model. We can elicit prior distribnS@about the shape of the
function, for example, do we expect linear, quadratic ousaidal output, and about
the smoothness and variation of the output, for example, what kind of length
scales do we expect the function to vary. A convenient andbilesemiparametric
family that is widely used to build emulators are Gaussiatpsses. They can be
used to give predictions of the model’s value at any inputhwhe predictions in
the form of Gaussian probability distributions over thepuitspace. They can also
incorporate a wide range of prior beliefs about both therpriean structure and the
covariance between points. For univariate computer magelsrite

n()18, A, 0% ~ GP(g(-),0%c(:, "))

whereg() = T h(0) is a prior mean function which is usually taken to be a linear
combination of a set of regressor functions;), whereg represents the vector of
coefficients. The prior variance is assumed here to be statjoacross the input
range and is written as the product of a prior at-a-pointaraes? = Var(n(9)),
and a correlation functiofCorr(m(6;), m(62)) = ¢(61,62). Common choices for
the correlation function include the Matérn function ahd exponential correlation
functions, such as the commonly used squared exponentidy/fa

0(917 6‘2) = exp [—(91 — 92)TA(91 — 6‘2)] .

HereA = diag A1, ..., \,) is a diagonal matrix containing the roughness parame-
ters. The\; represent how quickly we believe the output varies as a fomaif the
input, and can be thought of as a measure of the smoothndss fofrtction.

Once we observe the ensemble of model Mg, we update the prior beliefs to
find the posterior distribution. If we choose a conjugatepdistribution forg such



as an uninformative improper distributiaii3) « 1, or a Gaussian distribution, then
we can integrate oud to find the posterior

m(-)| Dsim, A, 0 ~ GP(g* (), 0°c*(+,-))

for modified functionsg*(-) andc¢*(-,-). Details of the calculation and forms for
g* andc* can be found in Rasmussen and Williams (2006) and many odhés. t
It is not possible to find a conjugate prior distribution foetroughness parame-
ters, so we take an empirical Bayes approach and give gaatprior distribution
and then find its maximum a posteriori value andXixat this value, approximat-
ing 7(m ()| Dsim, 02) by 7(m.(-)|Dsim, A, o2). If we give o2 an inverse chi-squared
distribution it is possible to integrate it out analytigalhowever, this leads to a t-
process distribution forn(-) which is inconvenient later, and so we leaveand use
MCMC to integrate it out numerically later in the analysis.

The Gaussian process emulator approach described abaovaiisiariate mod-
els. For multivariate outputs we could build separate irael@ent emulators for each
output, although this has the disadvantage of ignoring tlieetations between the
outputs and will generally perform poorly if the size of thesemble is small (as
we are throwing away valuable information). Conti and O’Hiad2007) provide
an extension of the above approach which allows us to modeiad siumber of
multivariate outputs capturing the correlations betwédemt, and Rougier (2008)
describes an outer product emulator which takes advantagente mathematical
tricks to make computational savings and so can be used orger laumber of
dimensions if we are prepared to make some fairly generahgssons about the
form of the regressors and the correlations. Both of thepeogighes require careful
thought about what correlations can be expected betwegubdimensions. This
can be difficult to think about, especially with modellersauimay not have much
experience with either probability or statistics. Theyals® both limited by the size
of problem that can be tackled, although Rougier (2008) ngaelat advances on this
front. For models with hundreds or thousands of outputsecti@mulation approach
may not be feasible, and so here we use a data reduction mietheduce the size
of the problem to something more manageable.

0.3.2 Principal Component Emulation

We take an approach here similar to Higdetnal. (2008), and use a dimension
reduction technique to project the output from the computedel onto a subspace
with a smaller number of dimensions and then build emulatérthe map from
the input space to the reduced output space. The only reqeireof the dimension
reduction is that there is a method for reconstruction todtiginal output space.
We use principal component analysis here (also known as #ikad of empirical
orthogonal functions), as the projection is then guarahtede the optimal linear
projection, in terms of minimizing the average reconsiorcerror. A schematic
plot of this idea is shown in Figure 2. The computer madél) is a function from
input spaced to output spac®’. Principal component analysis provides a map from



nPe(-) PCA -

yre

Figure 2 Schematic plot of the idea behind principal comporeulation© is the
input space)’ the output space, and(-) the computer model. We lef<(-) denote
the Gaussian process emulator frénto principal subspacg®©.

full output space) to reduced spacg?c. We build Gaussian process emulators to
map from® to YP¢ and then use the inverse of the original projection (alsoesli
projection) to move fron)?¢ to ). This gives a computationally cheap map from the
input space to the output spac® which does not use the model(-). This cheap
surrogate, or emulator, approximately interpolates alghints in the ensemble (it
is approximate due to the error in the principal componesdmstruction) and gives
probability distributions for the model output for any valaf the input.

Principal component analysis is a linear projection of tlaadonto a lower
dimensional subspace (the principal subspace) such thatatiance of the pro-
jected data is maximised. It is commonly done via an eigemvekbcomposition of
the correlation matrix, but for reasons of computationéitiency, we will use a
singular value decomposition of the data here.Yealenote anV x n matrix with
row i thei'” run of the computer modeY;. = m(6;) (recall that the model output
is n dimensional and that there afé runs in the ensembl®y;,,,). The dimension
reduction algorithm can then be described as follows:

1. Centre the matrix. Lgt denote the row vector of column means,¥etbe the
matrix Y with p subtracted from each ro( = Y — pu1) so that the mean of
each column o’ is zero. We might also choose to scale the matrix, so that
the variance of each column is one.

2. Calculate the singular value decomposition
Y' =UTV*.

V' is ann x n unitary matrix containing the principal components (thgee-
vectors) and’* denotes its complex conjugate transpasis.anN x n diag-
onal matrix containing the principal values (the eigenea)and is ordered so
that the magnitude of the diagonal entries decreases abmegatrix.U is an
N x N matrix containing the left singular values.



3. Decide on the dimension of the principal subspacesay (* < n). An
orthonormal basis for the principal subspace is then giverthle first n*
columns ofV (the leading:* eigenvectors) which we denote®s(ann x n*
matrix). LetV; denote the matrix containing the remaining column¥g of

4. ProjectY”’ onto the principal subspace. The coordinates in the subgjlae
factor scores) are found by projecting onta

YPe =YV

The it row of Y?¢ then denotes the coordinate of tHé ensemble member
in the spacér<.

Some comments:

¢ Note that the principal component analysis is done acrassdlumns of the
matrix rather than across the rows as is usual. The reshltighie eigenvalues
are of the same dimension as the original output with theihggeigenvalue
often taking the general form of the output.

e Thereis no established method for deciding on the dimensiari the princi-

pal subspace. The percentage of variance explained (sura obtresponding
eigenvalues i) is often used as a heuristic, with the stated aim being to
explain 95% or 99% of the variance. We must also decide whichponents

to include inV;. It may be found that components which only explain a small
amount of the variance (small eigenvalues) are importadiptively, as was
found in principal component regression (Jolliffe 2002)e0nethod of com-
ponent selection is through the use of diagnostic plots plaed below.

This leaves us with the coordinates of the ensemble in theipal subspace
yre with each row corresponding to the same row in the origiesigh D. Gaus-
sian processes can now be used to emulate this map. Usuallyilvhaven* > 1,
and so we still need to use a multivariate emulator such aptbposed by Rougier
(2008). However, emulating the reduced map withindependent Gaussian pro-
cesses often performs as well as using a fully multivariatelator, especially if the
size of the ensembl® is large compared withh*. Another trick which helps with
the emulation is to scale the matrix of scores so that eaeimoohas variance one.
This helps with tuning the MCMC sampler for tlaé parameters in the Gaussian
process covariance function, as it makesafiedimensions comparable with each
other.

To reconstruct from the subspagi® to the fullspace€) is also a linear trans-
formation. We can post-multiply the scores By to give a determinist reconstruc-
tion Y = YP<VI'. However, this does not account for the fact that by prajecti
into an*-dimensional subspace, we have discarded informationdrdtmension
reduction. To account for this lost information we add ramdmultiples of the
eigenvectors which describe the discarded dimensionselydrh. We model these
random multiples as zero-mean Gaussian distributionswaittances corresponding



to the relevant eigenvalues. This gives a stochastic réthera deterministic recon-
struction, which accounts for the error in the dimensiorugidn. In summary, we
reconstruct as

YI/ _ chvlT 4 q)‘/QT

where® is an N x (n — n*) matrix with i* column containingV draws from a
N(0,T i n=+) distribution. We then must add the column meang’ofo each
row of Y to complete the emulator.

A useful diagnostic tool when building emulators are leane-out cross vali-
dation plots. These are obtained by holding back one of\hteaining runs in the
ensemble, training the emulator with the remainMg- 1 runs, and then predicting
the held back values. Plotting the predicted values, with @5edibility intervals,
against the true values for each output dimension givesatidufeedback on how
the emulator is performing and ultimately allows us to vat@the emulator. These
plots can be used to choose the dimension of the principapsude and which com-
ponents to include. They are also useful for choosing whégrassor functions to
use in the specification of the mean structure. Once we hdidated the emulator,
we can then proceed to use it to calibrate the model.

Example 0.3.1 (UVic continued) We use principal component emulation to build a
cheap surrogate for the UVic climate model introduced eariRecall that the output
of the model is a time-series of 200 atmospheric, @@dictions. Figure 3 shows
the leave-one-out cross-validation plots for a selectidrionr of the 200 output
points. The emulation was done by projecting the time-sen#o a 10 dimensional
principal subspace and then emulating each map with indégenGaussian pro-
cesses before reconstructing the data back up to the ofligioace of 200 values.
A quadratic prior mean structure was useéd;, 02) = (1,601, 02,0%,0%,0,0,)", as
the cross-validation plots showed that this gave superesfgrmance over a linear
or constant mean structure, with only negligible furtheirgapossible by including
higher order terms. The plots show that the emulator is a&imly able to predict
the held back runs and that the uncertainty in our predictigshown by the 95%
credibility intervals) provide a reasonable measure of amcertainty (with 91%
coverage on average).

0.4 Multivariate Calibration

Recall that our aim is to find the distribution éfgiven the observations and the
model runs, namely

W(é|Dﬁclda Dsim) X 7T(DﬁCld|DSim’ é)?’f’(é|Dsim)
o 7(Dsicia| Dsim, )7 (6)

where we have noted tha(Dsim|é) = 7(Dsim) @nd so can be ignored in the pos-
terior distribution off, leavingm(Dsge1d|Dsim, 0) t0 be specified in order to find the
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Figure 3 Leave-one-out cross validation plots for a sedectf four of the 200

outputs. The error bars show 95% credibility intervals om pnedictions. The two
outliers seen in each plots are for model runs with inputsheretge of the design.
These points are predictions where we extrapolate ratlaerititerpolate from the
other model runs.

posterior. The calibration framework specified earlier
Dﬁeld(t) = m(t, é) + §(t) + E(t) 1)

contains three different terms we need to model. Paranfeigrchosen to make
m(é, t) andd(t) independent for alt (Kennedy and O’Hagan 2001), and the mea-
surement erroe(t) is also independent of both terms. This allows us to spebiy t
distribution of each part of Equation (1) in turn, and thefcatate the distribution
of the sum of the three components. If all three parts havewss$i@n distribution,
then the sum will also be Gaussian.

Distributional choices foe(t) andd(t) will be specific to each individual prob-
lem, but usually measurement errors are assumed to be zap-@aussian random
variables. Our approach allows for heteroscedastic erwith both known and
unknown variances. Usually however, measurement errdirbaieported with the
data.

Kennedy and O’Hagan also recommend the use of Gaussiansgrpders for
the discrepancy function to capture the error between therbedel prediction and
reality. While this is convenient mathematically, sensifidrms for the discrepancy
will need to be decided with the modellers in each case stgarblere we assume
thatd(¢) is modelled as a Gaussian process for ease of exposition.

Finally, we must find the distribution ah(é, t) using the principal component
emulator. Before considering the map fréto ), we must first consider the distri-
bution of the emulaton?<(-) from © to }¥. Using independent Gaussian processes
to model the map from the input space to each dimension ofriheipal subspace
(i.e.nPe = (ni,...,nt%)), we have that the prior distribution fgf“(-) is

nfc(')lﬁivoizv)‘i ~ Gp(gi(')vaizci('a ))



If we give §; a uniform improper priotr(3;) « 1, we can then condition 0P,
and integrate ous; to find

nfc(')u)sima 01’27 A~ GP(gr()a 0'1’20;‘('7 ))

where
g:(0) = B"h(0) + t(O)T AT (Y — HP)
ci(0,0) = c(0,0") —t(O)T A7) + (WO)T —t(O) A HYHT A H)™?
x (WO =t A H)T
and

B = (HTAT H) P HT A7 YPe
t(0) = (c(0,01), . ..,c(0,0x))
{Ai}jk = {ci(0;,0)}jh=1,...N
HT = (h(61),...,h(ON)).

assuming the regressors;), are the same for each dimension. H&r&; denotes
thei'” column of matrixy'?¢, andds, . . ., Oy are theN design points for the ensem-
ble of model runs. The reconstruction to the full spagé;) = n<(-)V,f + &V,
then has posterior distribution

7%(0)| Dsim, 0%, A ~ N(g*(O)V;F, a%c*(0,0) Vi Vi + Val'Vih)

whereg* = (g7, ..., g5 ) andl” = diagly+1.n%+1, - - -, L'n.n). AS COMmented pre-
viously, we take an empirical Bayes approach and fix the roagh parameters at
their maximum likelihood estimates. We do not integrateut analytically for rea-
sons of tractability, but leave them in the calculation asd MICMC to integrate
them out numerically later.

If all three parts of Equation (1) are Gaussian then we catewown the likeli-
hood of the field data conditional on the parameters:

7(Dsetd | Dsim, 02, 0,75

wherey; are parameters required for the discrepancy &in(possibly also includes
measurement error parameters). We elicit prior distrdmgiford and~s from the
modellers and decide upon priors fof ourselves (emulators parameters are the
responsibility of the person performing the emulation).t&n use a Markov Chain
Monte Carlo algorithm to find the posterior distributiortdslpossible to write down

a Metropolis-within-Gibbs algorithm to speed up the MCMGcaéations, although
we do not give the details here.
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Figure 4 Marginal posterior distributions for two of theibahtion parameters) o
and K., in the UVic climate model. The two plots on the leading diagloshow
the individual marginal plots. The bottom left plot shows fhairwise marginal dis-
tribution, and the top right box shows the posterior cotretebetween(,, and
K..

Example 0.4.1 (UVic continued) Figure 4 shows the marginal posterior distribu-
tions from calibrating the UVic model to the Keeling and Wh@O005) observa-
tions. We use an autoregressive process of order one foriticeegpancy term with
§(t) = pd(t — 1) + U whereU ~ N(0,0%). We givep aT'(5, 1) prior truncated at
one, andr? al'(4, 0.6) prior distribution. The Markov chains were run for 1,000000
iterations. The first 200,000 samples were discarded as-buand the remaining
samples were thinned to every tenth value leaving 80,00@leamUniform prior
distributions were used fof)1o and K. (Q10 ~ U[L,4] and K. ~ U[0.25,1.75]),
andI'(1.5,6) priors were used for each of the emulator varianeés Tests were
done to check the sensitivity of the results to choice ofrmistribution, and the
analysis was robust to changes in priors fot and s, but not to changes in the
priors for Q19 and K.

This will not usually be the end of the calibration procesise Tesults will be
returned to the modellers, who may decide to use them to iraghee model, before
another calibration is performed.



0.5 Conclusions

In this chapter we have shown how to extended the calibrajppnoach of Kennedy
and O’Hagan (2001) to enable the calibration of computer etodith a large
number of multivariate outputs. Projecting the data ontoveel dimensional space
enables existing emulator technology to be used to emidatedmputer simulator.
Principal component analysis provides a simple and napuogéction onto a lower
dimensional space and the data can easily be reconstroadtes full space with the
inverse linear projection. The calibration takes accodimheasurement error, code
uncertainty and model discrepancy, giving posterior ittistrons which incorporate
expert knowledge as well as the model runs and field data.

It should be stressed that the resulting posteriors do rtssarily give estimates
of the true value of physical parameters, but rather giveegivhich lead the model
to best explain the data. In order to estimate the true phlygaiue of parameters,
the model discrepancy function must be very carefully dpeti This is still a new
area of research and much remains to be done in the area oflimgdéscrepancy
functions.
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