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This chapter is concered with how to calibrate a computer model to observational
data when the model produces multivariate output and is temporally expensive to
run. The significance of considering models with long run times is that they can
only be run at a limited number of different inputs, ruling out a brute-force Monte
Carlo approach. Consequently, all inference must be done with a limited ensemble
of model runs. A probabilistic approach is taken here, with the aim being to find a
probability distribution which represents our uncertainty about the true model inputs
given the observational data and the computer model. We assume statistical models
for the measurement errors on the observed data and for the discrepancy between the
model and reality. We also describe a statistical model for our uncertainty about the
computer model’s value at untried input values.

We take a Bayesian approach and describe our prior beliefs about the model and
update these beliefs after observing an ensemble of model runs. Gaussian process
priors are used as a flexible semi-parametric family to describe our beliefs, and the
posterior distribution of the process can be considered as ameta-model of the com-
puter model. We refer to the meta-model as anemulatorof the computersimulator
(Sackset al. 1989). This approach allows beliefs to be described about the model
output at input configurations not in the original design.
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The Bayesian approach to calibration described here was first given by Kennedy
and O’Hagan (2001). Their approach was for univariate computer models, and we
extend that here to deal with multivariate models. We use principal component anal-
ysis to project the multivariate model output onto a lower dimensional space, and
then use Gaussian processes to emulate the map from the inputspace to the lower
dimensional space. We can then reconstruct from the subspace to the original data
space. This gives a cheap surrogate for the computer model that can be used for
calibration.

The layout of this paper is as follows. In Section 1 and 2 we introduce problem
and in Section 2 we describe the notation and the calibrationframework. In Section
3 we introduce the idea of principal component emulation andin Section 4 we give
details of how to use this approach to calibrate multivariate models. To illustrate
the methodology we use the University of Victoria intermediate complexity climate
model, which we will calibrate to observational data collected throughout the latter
half of the twentieth century. The model is introduced at theend of Section 1 and is
returned to at the end of each subsequent section.

0.1 Introduction

The process of fitting a model to data has different names depending on the dis-
cipline. It is variously known as an inverse problem, data assimilation, parameter
estimation, calibration, or as we prefer to think of it, as a Bayesian inference prob-
lem. In this section we carefully describe the problem and set up the notation needed
for the developments described in the following sections. We consider the problem in
which we have a computer model of a physical system along withsome observations
of the system. The aim is to combine the science captured by the computer model
with the physical observations, to learn about parameter values and initial conditions
for the system. There are three sources of information that we want to incorporate:

1. The computer model,m(·), built using expert scientific knowledge.

2. Field observations of the physical system,Dfield.

3. Other background information and expert knowledge, suchas prior distri-
butions of parameters and information about measurement error and model
discrepancy.

We consider each of these sources in turn.

The computer model

The computer model,m(·), is considered to be a map from the input spaceΘ × T ,
to the output spaceY ⊂ R

n. Here we distinguish between two different types of
input parameters:θ ∈ Θ are the calibration parameters that we wish to estimate, and
t ∈ T are control parameters or index parameters that are assumedto be known.



The calibration parametersθ may be physical constants, context specific con-
stants, or fudge factors needed to make the model perform well. These are parameters
which would not need to be specified if we were doing a physicalexperiment. We
take the best input approach and assume that there is a single‘best’ value ofθ,
which we labelθ̂, such that the model run at̂θ most accurately represents the field
data given the imposed error structure.

The control parameterst ∈ T may be context indicating inputs (for example,
they might specify yearly industrial CO2 emissions), known constants, or output
index variables. For multivariate models there is an input-output dichotomy, in that
we can treat the model as multivariate or alternatively we could add an index vari-
able to the inputs and consider the model to be univariate. For example, part of the
predictions of the UVic climate model introduced below are atmospheric CO2 con-
centrations for the years 1800-1999.The approach taken in this chapter is to view this
as a 200 dimensional multivariate computer model. An alternative approach would
be to add an index variablei to the input, wherei indicates which year’s CO2 con-
centration we wish to predict. This would allow us to view themodel as univariate
and apply the methods of Kennedy and O’Hagan (2001). However, in practice if
the number of outputs is large then there are considerable challenges involved both
computationally in emulating the function, and theoretically in specifying a suitable
covariance function for the emulator, especially if the outputs are of different type.

Our approach in this chapter is to treat the models as multivariate. We suppress
any dependence on context indicating inputs and known constants for notational clar-
ity, although their inclusion does not change the analysis.At certain points we add in
an index variablet for the outputs and writem(θ, t) when this helps with the exposi-
tion, however for the most part we just writem(θ). The usage will be clear from the
context. A final point to note is that it is not always clear which constants we should
treat as unknown. For while the true physical value of a parameter may be known, it
may be that using a different value will lead to better predictions with the computer
model. This judgement needs careful thought in conjunctionwith consideration of
the beliefs of the modellers.

The focus here is on calibrating models with long run times, where what we
mean by long depends on the situation (number of inputs and outputs, amount of
field data, amount of computer power available, etc.). A consequence of this cost
will be that we will only have a limited ensemble of model runsavailable to us.
In other words, there will be a set ofN design pointsD = {θi : i = 1, . . . , N} for
which we know the output of the modelDsim = {yi = m(θi) : i = 1, . . . , N}. We
refer to these model runs as the simulated data,Dsim. Note thatD should be chosen
to be a space filling design such as a maxi-min Latin hypercubeor a Sobal sequence.
In Section 3 we make assumptions about the continuity and smoothness ofm(·) that
allows us to predict its value at inputsθ not in the original design.



Field observations

We assume that we have observations of the physical system,Dfield, that directly
correspond to outputs from the computer model. We letζ(t) represent reality att,
wheret is an index variable such as time or location etc. The assumption made here
is that the field data is a measurement of reality att with independent Gaussian error.
That is

Dfield(t) = ζ(t) + ǫ(t)

whereǫ(t) ∼ N(µt, σ
2
t ). It will usually be the case thatµt = 0 for all t, and often

the case that we have homoscedastic errors so thatσ2
t = σ2 for all t, however neither

of these assumptions is necessary for the analysis. Often the mean and variance
parameters will be known, and will be reported with the data.

Note that the assumption here is that we observe reality withindependent random
noise. A common and incorrect assumption in data assimilation approaches is to
assume that we observe the model prediction plus independent random noise. If
there is any discrepancy between the model and reality, thisis assumption is wrong
and could lead to serious errors.

Other background information

Calibration is primarily about combining the physics in themodel with field obser-
vations of the system to produce estimates forθ̂. However, there will often be expert
knowledge available that has not been built into the model. Part of this knowledge
will be prior information about the likely best input values, gained through previous
experiments and reading the literature etc. Ideally, information should be elicited
from the experts before they observe either the ensemble of model runs or the field
data, however in practise this will often not be the case. It is extremely rare to be
completely uncertain about̂θ, indeed it is hard to imagine a situation where val-
ues as diverse as1, 10100, 1010000 are all held to be equally likely. We represent this
prior knowledge as a probability distribtionπ(θ) over the range of possible inputsΘ.
Although we are using probability to represent our uncertainty aboutθ, that does not
mean that we believe it to be a random value, just unknown. Jaynes (2003) gives an
introduction and justification for why the Bayesian paradigm is the right way to treat
uncertainty and Garthwaiteet al. (2005) give an excellent introduction to elicitation
of experts beliefs.

As well as prior information aboutθ, there may also be prior knowledge about
other aspects of the experiment. For example, we have already commented that the
structure and magnitude of the measurement error of the fieldobservations is often
known and can be elicited from the relevant experts. The modellers may also know
something about how well the simulatorm(·) models realityζ(·). As explained in
more detail below, when making inferences aboutθ̂, it is important to account for
any discrepancy between the model and reality. We denote this model discrepancy
by δ(·) and ask the model builders to provide information about how and where the
model may be wrong. They may, for example, have more confidence in some of the
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Figure 1 Ensemble of 47 model runs of the UVic climate model for a design on two
inputsQ10 andKc. The output (black lines) gives the atmospheric CO2 predictions
for 1800-1999, and the 57 field observations are shown as circles with error bars of
two standard deviations.

model outputs than others, or they may have more faith in the predictions in some
contexts than in others.

Example 0.1.1 (UVic Climate Model) In order to demonstrate the methodology we
introduce an example from climate science which we present along with the theory.
We use the University of Victoria Earth System Climate Model(UVic ESCM) cou-
pled with a dynamic vegetation and terrestrial carbon cycleand an inorganic ocean
carbon cycle (Meissner et al. 2003). The model was built in order to study potential
feedbacks in the terrestrial carbon cycle and to see how these affect future climate
predictions. We present a simplified analysis here, with full details available in Ric-
ciuto et al. We consider the model to have just two inputs,Q10 and Kc, and to
output a time-series of atmospheric CO2 values. InputQ10 controls the temperature
dependence of respiration and can be considered a carbon source, whereasKc is
the Michaelis–Menton constant for CO2 and controls the sensitivity of photosynthe-
sis and can be considered a carbon sink. The aim is calibrate these two parameters
to the Keeling and Whorf (2005) sequence of atmospheric carbon dioxide measure-
ments. Each model run takes approximately two weeks of computer time and we have
an ensemble of 47 model runs with which to perform the analysis. The model output
and the field observations are shown in Figure 1.



0.2 Statistical Calibration Framework

Calibration is the process of judging which input parametervalues are consistent
with the field data, the model and any prior beliefs. The Bayesian approach to cal-
ibration is to find the posterior distribution of the best input parameter given these
three sources of information; namely, we aim to find

π(θ̂|Dsim,Dfield, E),

whereE represents the prior information,Dsim the ensemble of model runs, and
Dfield the field observations. This posterior distribution gives relative weights to all
θ ∈ Θ, and represents our beliefs about the best input value in thelight of the com-
puter experiment and the field data.

The posterior distribution of̂θ is proportional to its likelihood multiplied by its
prior distribution:

π(θ̂|Dsim,Dfield, E) ∝ π(Dsim,Dfield|θ̂, E)π(θ̂|E)

and so to compute the calibration posterior we require the likelihood of the data
π(Dsim,Dfield|θ̂, E). Often, the hardest part of any calibration is specificationof
this likelihood, as once we have the prior and the likelihood, finding the posterior
distribution is in theory just an integral calculation. In practise however, this will
usually require careful application of a numerical integration technique such as a
Markov Chain Monte Carlo (MCMC) algorithm.

To specify the likelihood we need to state how reality relates to the computer
model, and what we mean by the calibrated input valueθ̂. We assume that reality att,
ζ(t), is equal to the computer model output when run at its ‘best value’ θ̂ (heret is an
index of the outputs) plus a model discrepancy termδ(t) which captures the failings
of the model. We assume thatm(θ̂, t) is sufficient for the model in the calibration,
in the sense that once we knowm(θ̂) we can not learn anything further about reality
from the computer model. Note thatθ̂ is the best value here only in the sense of
most accurately representing the data according to the specified error structure. The
value found forθ̂ need not coincide with the true physical value ofθ, and so the
calibration parameters are model parameters, not physicalparameters. This point
should be strongly stressed to the experts when eliciting prior distributions forθ̂.
We assume that the field data is a direct measurement of reality recorded with some
independent measurement errorǫ(t). Mathematically, the calibration framework is

ζ(t) = m(θ̂, t) + δ(t)

Dfield(t) = ζ(t) + ǫ(t).

Note that the input-output duality allows us to write the inference framework as

Dfield = m(θ̂) + δ + ǫ



by writing all quantities as vectors. Once we have made distributional assumptions
aboutδ(t), ǫ(t) and possiblym(θ̂, t), this framework allows us to calculate a likeli-
hood function for the data.

The decision to include a model error term,δ(·), in the calibration is motivated
by several ideas. Firstly, if we do not model the discrepancy, we would be making
the assumption that the field data is just the model output plus independent random
errors. Without the model error term this independence assumption will be wrong.
Secondly, as stated by Box (1976), all models are wrong. There are a variety of
reasons why this should be. Perhaps not all physical processes have been included,
or perhaps the model equations are solved using a numerical approximation, and so
on. It is important to account for this added source of uncertainty in any predictions,
as if not, we may have undue confidence in our predictions.

Goldstein and Rougier (2008) take this idea further and introduce the idea of a
reified model. The reified model is the version of the model we would run if we
had unlimited computing resources. So for example, in global climate models the
earth’s surface is split into a grid of cells and the computation assumes each cell
is homogeneous (UVic uses a100 × 100 grid across the earth’s surface with eight
ocean depths). If infinite computer resources were available we could let the grid
size tend to zero, giving a continuum of points across the globe. While clearly an
impossibility, thinking about the reified model helps us to break down the model
error into more manageable chunks; we can consider the difference between the
actual computer model and the reified model, and then the difference between the
reified model and reality. This approach may provide a way to help the modellers
think more carefully about the model discrepancy termδ(·).

If the computer model is quick to run, then we can essentiallyassume that its
value is known for all possible input configurations, as in any inference procedure we
can simply evaluate the model whenever its value is needed. In this case, calculation
of the calibration posterior

π(θ|Dfield, m, E) ∝ π(Dfield, |θ, m, E)π(θ|E),

wherem represents the computer model, is relatively easy as the calibration frame-
work gives that

Dfield − m(θ̂) = δ + ǫ.

Given distributions for the model discrepancyδ and measurement errorǫ we can
calculate the likelihood of the field data, and thus can find the posterior distribution.
If the model is not quick running, then the model’s value is unknown at all input
values other than those in designD. This uncertainty about the model output at
untried input configurations is commonly calledcode uncertainty. If we want to
account for this source of uncertainty in the calibration then we need a statistical
model in order to describe our beliefs about the output valuefor all possible input
values. This is the topic of the next section.



0.3 Principal Component Emulation

0.3.1 Emulation

If the computer model,m(·), is temporally expensive to evaluate, then its value
is unknown at all input values except those in a small ensemble of model runs.
We assume that the code has been runN times for all inputs in a space-filling
designD = {θi ∈ Θ : i = 1, . . . , N} to produce outputDsim = {m(θi) ∈ Rn : i =
1, . . . , N}, and that further model runs are not available. For anyθ 6∈ D we are
uncertain about the value of the model for this input. However, if we believe that the
model is a smooth continuous function of the inputs, then we can learn aboutm(θ)
by looking at ensemble members run with inputs close toθ. We could, for example,
choose to predictm(θ) by linearly interpolating from the closest ensemble mem-
bers. The function used to interpolate and extrapolateDsim to other input values is
commonly called an emulator, and there is extensive literature on emulation (some-
times called meta-modelling) for computer experiments (see Santneret al. (2003)
for references).

We use a Bayesian framework to build an emulator which accurately captures
our beliefs about the model. We can elicit prior distributions about the shape of the
function, for example, do we expect linear, quadratic or sinusoidal output, and about
the smoothness and variation of the output, for example, over what kind of length
scales do we expect the function to vary. A convenient and flexible semiparametric
family that is widely used to build emulators are Gaussian processes. They can be
used to give predictions of the model’s value at any input, with the predictions in
the form of Gaussian probability distributions over the output space. They can also
incorporate a wide range of prior beliefs about both the prior mean structure and the
covariance between points. For univariate computer modelswe write

η(·)|β, λ, σ2 ∼ GP (g(·), σ2c(·, ·))

whereg(θ) = βT h(θ) is a prior mean function which is usually taken to be a linear
combination of a set of regressor functions,h(·), whereβ represents the vector of
coefficients. The prior variance is assumed here to be stationary across the input
range and is written as the product of a prior at-a-point varianceσ2 = Var(η(θ)),
and a correlation functionCorr(m(θ1), m(θ2)) = c(θ1, θ2). Common choices for
the correlation function include the Matérn function and the exponential correlation
functions, such as the commonly used squared exponential family

c(θ1, θ2) = exp
[

−(θ1 − θ2)
T Λ(θ1 − θ2)

]

.

HereΛ = diag(λ1, . . . , λn) is a diagonal matrix containing the roughness parame-
ters. Theλi represent how quickly we believe the output varies as a function of the
input, and can be thought of as a measure of the smoothness of the function.

Once we observe the ensemble of model runsDsim, we update the prior beliefs to
find the posterior distribution. If we choose a conjugate prior distribution forβ such



as an uninformative improper distributionπ(β) ∝ 1, or a Gaussian distribution, then
we can integrate outβ to find the posterior

m(·)|Dsim, λ, σ2 ∼ GP (g∗(·), σ2c∗(·, ·))

for modified functionsg∗(·) and c∗(·, ·). Details of the calculation and forms for
g∗ andc∗ can be found in Rasmussen and Williams (2006) and many other texts.
It is not possible to find a conjugate prior distribution for the roughness parame-
ters, so we take an empirical Bayes approach and give eachλi a prior distribution
and then find its maximum a posteriori value and fixλi at this value, approximat-
ing π(m(·)|Dsim, σ2) by π(m(·)|Dsim, λ̂, σ2). If we giveσ2 an inverse chi-squared
distribution it is possible to integrate it out analytically, however, this leads to a t-
process distribution form(·) which is inconvenient later, and so we leaveσ2 and use
MCMC to integrate it out numerically later in the analysis.

The Gaussian process emulator approach described above is for univariate mod-
els. For multivariate outputs we could build separate independent emulators for each
output, although this has the disadvantage of ignoring the correlations between the
outputs and will generally perform poorly if the size of the ensemble is small (as
we are throwing away valuable information). Conti and O’Hagan (2007) provide
an extension of the above approach which allows us to model a small number of
multivariate outputs capturing the correlations between them, and Rougier (2008)
describes an outer product emulator which takes advantage of some mathematical
tricks to make computational savings and so can be used on a larger number of
dimensions if we are prepared to make some fairly general assumptions about the
form of the regressors and the correlations. Both of these approaches require careful
thought about what correlations can be expected between output dimensions. This
can be difficult to think about, especially with modellers who may not have much
experience with either probability or statistics. They arealso both limited by the size
of problem that can be tackled, although Rougier (2008) madegreat advances on this
front. For models with hundreds or thousands of outputs a direct emulation approach
may not be feasible, and so here we use a data reduction methodto reduce the size
of the problem to something more manageable.

0.3.2 Principal Component Emulation

We take an approach here similar to Higdonet al. (2008), and use a dimension
reduction technique to project the output from the computermodel onto a subspace
with a smaller number of dimensions and then build emulatorsof the map from
the input space to the reduced output space. The only requirement of the dimension
reduction is that there is a method for reconstruction to theoriginal output space.
We use principal component analysis here (also known as the method of empirical
orthogonal functions), as the projection is then guaranteed to be the optimal linear
projection, in terms of minimizing the average reconstruction error. A schematic
plot of this idea is shown in Figure 2. The computer modelm(·) is a function from
input spaceΘ to output spaceY. Principal component analysis provides a map from
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Figure 2 Schematic plot of the idea behind principal component emulation.Θ is the
input space,Y the output space, andm(·) the computer model. We letηpc(·) denote
the Gaussian process emulator fromΘ to principal subspaceYpc.

full output spaceY to reduced spaceYpc. We build Gaussian process emulators to
map fromΘ to Ypc and then use the inverse of the original projection (also a linear
projection) to move fromYpc toY. This gives a computationally cheap map from the
input spaceΘ to the output spaceY which does not use the modelm(·). This cheap
surrogate, or emulator, approximately interpolates all the points in the ensemble (it
is approximate due to the error in the principal component reconstruction) and gives
probability distributions for the model output for any value of the input.

Principal component analysis is a linear projection of the data onto a lower
dimensional subspace (the principal subspace) such that the variance of the pro-
jected data is maximised. It is commonly done via an eigenvalue decomposition of
the correlation matrix, but for reasons of computational efficiency, we will use a
singular value decomposition of the data here. LetY denote anN × n matrix with
row i the ith run of the computer model,Yi· = m(θi) (recall that the model output
is n dimensional and that there areN runs in the ensembleDsim). The dimension
reduction algorithm can then be described as follows:

1. Centre the matrix. Letµµµ denote the row vector of column means, letY ′ be the
matrixY with µµµ subtracted from each row (Y ′ = Y − µµµ1) so that the mean of
each column ofY ′ is zero. We might also choose to scale the matrix, so that
the variance of each column is one.

2. Calculate the singular value decomposition

Y ′ = UΓV ∗.

V is ann × n unitary matrix containing the principal components (the eigen-
vectors) andV ∗ denotes its complex conjugate transpose.Γ is anN × n diag-
onal matrix containing the principal values (the eigenvalues) and is ordered so
that the magnitude of the diagonal entries decreases acrossthe matrix.U is an
N × N matrix containing the left singular values.



3. Decide on the dimension of the principal subspace,n∗ say (n∗ < n). An
orthonormal basis for the principal subspace is then given by the first n∗

columns ofV (the leadingn∗ eigenvectors) which we denote asV1 (ann × n∗

matrix). LetV2 denote the matrix containing the remaining columns ofV .

4. ProjectY ′ onto the principal subspace. The coordinates in the subspace (the
factor scores) are found by projecting ontoV1:

Y pc = Y ′V1.

The ith row of Y pc then denotes the coordinate of theith ensemble member
in the spaceYpc.

Some comments:

• Note that the principal component analysis is done across the columns of the
matrix rather than across the rows as is usual. The result is that the eigenvalues
are of the same dimension as the original output with the leading eigenvalue
often taking the general form of the output.

• There is no established method for deciding on the dimensionn∗ of the princi-
pal subspace. The percentage of variance explained (sum of the corresponding
eigenvalues inΓ) is often used as a heuristic, with the stated aim being to
explain 95% or 99% of the variance. We must also decide which components
to include inV1. It may be found that components which only explain a small
amount of the variance (small eigenvalues) are important predictively, as was
found in principal component regression (Jolliffe 2002). One method of com-
ponent selection is through the use of diagnostic plots as explained below.

This leaves us with the coordinates of the ensemble in the principal subspace
Ypc, with each row corresponding to the same row in the original designD. Gaus-
sian processes can now be used to emulate this map. Usually, we will haven∗ > 1,
and so we still need to use a multivariate emulator such as that proposed by Rougier
(2008). However, emulating the reduced map withn∗ independent Gaussian pro-
cesses often performs as well as using a fully multivariate emulator, especially if the
size of the ensembleN is large compared withn∗. Another trick which helps with
the emulation is to scale the matrix of scores so that each column has variance one.
This helps with tuning the MCMC sampler for theσ2 parameters in the Gaussian
process covariance function, as it makes then∗ dimensions comparable with each
other.

To reconstruct from the subspaceYpc to the fullspaceY is also a linear trans-
formation. We can post-multiply the scores byV T

1 to give a determinist reconstruc-
tion Y ′′ = Y pcV T

1 . However, this does not account for the fact that by projecting
into a n∗-dimensional subspace, we have discarded information in the dimension
reduction. To account for this lost information we add random multiples of the
eigenvectors which describe the discarded dimensions, namely V2. We model these
random multiples as zero-mean Gaussian distributions withvariances corresponding



to the relevant eigenvalues. This gives a stochastic ratherthan a deterministic recon-
struction, which accounts for the error in the dimension reduction. In summary, we
reconstruct as

Y ′′ = Y pcV T
1 + ΦV T

2

whereΦ is anN × (n − n∗) matrix with ith column containingN draws from a
N(0, Γn∗+i,n∗+i) distribution. We then must add the column means ofY to each
row of Y ′′ to complete the emulator.

A useful diagnostic tool when building emulators are leave-one-out cross vali-
dation plots. These are obtained by holding back one of theN training runs in the
ensemble, training the emulator with the remainingN − 1 runs, and then predicting
the held back values. Plotting the predicted values, with 95% credibility intervals,
against the true values for each output dimension gives valuable feedback on how
the emulator is performing and ultimately allows us to validate the emulator. These
plots can be used to choose the dimension of the principal subspace and which com-
ponents to include. They are also useful for choosing which regressor functions to
use in the specification of the mean structure. Once we have validated the emulator,
we can then proceed to use it to calibrate the model.

Example 0.3.1 (UVic continued)We use principal component emulation to build a
cheap surrogate for the UVic climate model introduced earlier. Recall that the output
of the model is a time-series of 200 atmospheric CO2 predictions. Figure 3 shows
the leave-one-out cross-validation plots for a selection of four of the 200 output
points. The emulation was done by projecting the time-series onto a 10 dimensional
principal subspace and then emulating each map with independent Gaussian pro-
cesses before reconstructing the data back up to the original space of 200 values.
A quadratic prior mean structure was used,h(θ1, θ2) = (1, θ1, θ2, θ

2
1, θ

2
2 , θ1θ2)

T , as
the cross-validation plots showed that this gave superior performance over a linear
or constant mean structure, with only negligible further gains possible by including
higher order terms. The plots show that the emulator is accurately able to predict
the held back runs and that the uncertainty in our predictions (shown by the 95%
credibility intervals) provide a reasonable measure of ouruncertainty (with 91%
coverage on average).

0.4 Multivariate Calibration

Recall that our aim is to find the distribution ofθ̂ given the observations and the
model runs, namely

π(θ̂|Dfield,Dsim) ∝ π(Dfield|Dsim, θ̂)π(θ̂|Dsim)

∝ π(Dfield|Dsim, θ̂)π(θ̂)

where we have noted thatπ(Dsim|θ̂) = π(Dsim) and so can be ignored in the pos-
terior distribution ofθ̂, leavingπ(Dfield|Dsim, θ̂) to be specified in order to find the
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Figure 3 Leave-one-out cross validation plots for a selection of four of the 200
outputs. The error bars show 95% credibility intervals on the predictions. The two
outliers seen in each plots are for model runs with inputs on the edge of the design.
These points are predictions where we extrapolate rather than interpolate from the
other model runs.

posterior. The calibration framework specified earlier

Dfield(t) = m(t, θ̂) + δ(t) + ǫ(t) (1)

contains three different terms we need to model. Parameterθ̂ is chosen to make
m(θ̂, t) andδ(t) independent for allt (Kennedy and O’Hagan 2001), and the mea-
surement errorǫ(t) is also independent of both terms. This allows us to specify the
distribution of each part of Equation (1) in turn, and then calculate the distribution
of the sum of the three components. If all three parts have a Gaussian distribution,
then the sum will also be Gaussian.

Distributional choices forǫ(t) andδ(t) will be specific to each individual prob-
lem, but usually measurement errors are assumed to be zero-mean Gaussian random
variables. Our approach allows for heteroscedastic errors, with both known and
unknown variances. Usually however, measurement errors will be reported with the
data.

Kennedy and O’Hagan also recommend the use of Gaussian process priors for
the discrepancy function to capture the error between the best model prediction and
reality. While this is convenient mathematically, sensible forms for the discrepancy
will need to be decided with the modellers in each case separately. Here we assume
thatδ(t) is modelled as a Gaussian process for ease of exposition.

Finally, we must find the distribution ofm(θ̂, t) using the principal component
emulator. Before considering the map fromΘ toY, we must first consider the distri-
bution of the emulatorηpc(·) from Θ toYpc. Using independent Gaussian processes
to model the map from the input space to each dimension of the principal subspace
(i.e.,ηpc = (ηpc

1 , . . . , η
pc
n∗)), we have that the prior distribution forηpc

i (·) is

η
pc
i (·)|βi, σ

2
i , λi ∼ GP (gi(·), σ

2
i ci(·, ·)).



If we give βi a uniform improper priorπ(βi) ∝ 1, we can then condition onDsim

and integrate outβi to find

η
pc
i (·)|Dsim, σ2

i , λi ∼ GP (g∗i (·), σ2
i c∗i (·, ·))

where

g∗i (θ) = β̂T h(θ) + t(θ)T A−1(Y pc
·i − Hβ̂)

c∗i (θ, θ
′) = c(θ, θ′) − t(θ)T A−1t(θ′) + (h(θ)T − t(θ)T A−1H)(HT A−1H)−1

× (h(θ′)T − t(θ′)T A−1H)T

and

β̂i = (HT A−1H)−1HT A−1Y
pc
·i

t(θ) = (c(θ, θ1), . . . , c(θ, θN ))

{Ai}jk = {ci(θj , θk)}j,k=1,...,N

HT = (h(θ1), . . . , h(θN )).

assuming the regressors,h(·), are the same for each dimension. Here,Y
pc
·i denotes

theith column of matrixY pc, andθ1, . . . , θN are theN design points for the ensem-
ble of model runs. The reconstruction to the full space,ηe(·) = ηpc(·)V T

1 + ΦV T
2 ,

then has posterior distribution

ηe(θ)|Dsim, σ2, λ ∼ N(g∗(θ)V T
1 , σ2c∗(θ, θ)V1V

T
1 + V2Γ

′V T
2 )

whereg∗ = (g∗1 , . . . , g∗n∗) andΓ′ = diag(Γn∗+1,n∗+1, . . . , Γn,n). As commented pre-
viously, we take an empirical Bayes approach and fix the roughness parameters at
their maximum likelihood estimates. We do not integrateσ2 out analytically for rea-
sons of tractability, but leave them in the calculation and use MCMC to integrate
them out numerically later.

If all three parts of Equation (1) are Gaussian then we can write down the likeli-
hood of the field data conditional on the parameters:

π(Dfield|Dsim, σ2, θ, γδ)

whereγδ are parameters required for the discrepancy termδ(t) (possibly also includes
measurement error parameters). We elicit prior distributions forθ andγδ from the
modellers and decide upon priors forσ2 ourselves (emulators parameters are the
responsibility of the person performing the emulation). Wethen use a Markov Chain
Monte Carlo algorithm to find the posterior distributions. It is possible to write down
a Metropolis-within-Gibbs algorithm to speed up the MCMC calculations, although
we do not give the details here.
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Figure 4 Marginal posterior distributions for two of the calibration parameters,Q10

andKc, in the UVic climate model. The two plots on the leading diagonal show
the individual marginal plots. The bottom left plot shows the pairwise marginal dis-
tribution, and the top right box shows the posterior correlation betweenQ10 and
Kc.

Example 0.4.1 (UVic continued)Figure 4 shows the marginal posterior distribu-
tions from calibrating the UVic model to the Keeling and Whorf (2005) observa-
tions. We use an autoregressive process of order one for the discrepancy term with
δ(t) = ρδ(t − 1) + U whereU ∼ N(0, σ2

δ ). We giveρ a Γ(5, 1) prior truncated at
one, andσ2

δ aΓ(4, 0.6) prior distribution. The Markov chains were run for 1,000,000
iterations. The first 200,000 samples were discarded as burn-in and the remaining
samples were thinned to every tenth value leaving 80,000 samples. Uniform prior
distributions were used forQ10 andKc (Q10 ∼ U [1, 4] andKc ∼ U [0.25, 1.75]),
and Γ(1.5, 6) priors were used for each of the emulator variancesσ2. Tests were
done to check the sensitivity of the results to choice of prior distribution, and the
analysis was robust to changes in priors forσ2 and γδ, but not to changes in the
priors for Q10 andKc.

This will not usually be the end of the calibration process. The results will be
returned to the modellers, who may decide to use them to improve the model, before
another calibration is performed.



0.5 Conclusions

In this chapter we have shown how to extended the calibrationapproach of Kennedy
and O’Hagan (2001) to enable the calibration of computer models with a large
number of multivariate outputs. Projecting the data onto a lower dimensional space
enables existing emulator technology to be used to emulate the computer simulator.
Principal component analysis provides a simple and naturalprojection onto a lower
dimensional space and the data can easily be reconstructed to the full space with the
inverse linear projection. The calibration takes account of measurement error, code
uncertainty and model discrepancy, giving posterior distributions which incorporate
expert knowledge as well as the model runs and field data.

It should be stressed that the resulting posteriors do not necessarily give estimates
of the true value of physical parameters, but rather give values which lead the model
to best explain the data. In order to estimate the true physical value of parameters,
the model discrepancy function must be very carefully specified. This is still a new
area of research and much remains to be done in the area of modelling discrepancy
functions.
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